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ABSTRACT 

Disruption of the intricate gene expression program represents one of major driving factors for the 

development, progression and maintenance of human cancer, and is often associated with acquired 

therapeutic resistance. At the molecular level, cancerous phenotypes are the outcome of cellular 

functions of critical genes, regulatory interactions of histones, and chromatin remodeling complexes 

in response to dynamic and persistent upstream signals. A large body of genetic and biochemical 

evidence suggests that the chromatin remodelers integrate the extracellular and cytoplasmic signals 

to control gene activity. Consequently, widespread dysregulation of chromatin remodelers and the 

resulting inappropriate expression of regulatory genes, together, lead to oncogenesis. We 

summarize the recent developments and current state of the dysregulation of the chromatin 

remodeling components as the driving mechanism underlying the growth and progression of human 

tumors. Because chromatin remodelers, modifying enzymes and protein-protein interactions 

participate in interpreting the epigenetic code, selective chromatin remodelers and bromodomains 

have emerged as new frontiers for pharmacological intervention to develop future anti-cancer 

strategies to be used either as single-agent or in combination therapies with chemotherapeutics or 

radiotherapy.  
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INTRODUCTION  

Disruption of the intricate gene expression program in the context of chromatin is one of major 

driving factors for the development, progression and maintenance of human cancer, and often 

associated acquired therapeutic resistance. At the molecular level, cancerous phenotypes are the 

outcome of cellular functions of gene products - including underlying transcription and post-

translational events, regulatory interactions of histone and non-histone proteins, and chromatin 

remodeling, in-general, in response to dynamic and persistent upstream signals. The building block 

of chromatin are nucleosomes -147 base pairs of DNA wrapped over an octamer unit which is 

composed of pairs of the histones H2A, H2B, H3, and H4.1 Nucleosomes are further assembled to 

form higher-order chromatin with the linker histone H1, non-histone proteins and metal ions.2 The 

highly organized chromatin structure constitutes a significant barrier for the eukaryotic transcription 

machinery gaining access only to small regions of DNA during gene transcription.3   

The complexity of mechanisms regulating gene expression is steadily increasing and now 

comprises a complex interplay of factors mediated by chromatin topology, cross talk of post-

translational modifications on histones and other nuclear proteins, modification of DNA itself and 

the architecture of gene promoters driven by cis acting elements such as enhancers and silencers as 

well as non-coding RNA sequences. Recent literature suggests that dysfunction of these regulatory 

elements results in alterations in gene transcription programs driving disease specific gene 

expression and thus, highlights the significance of transcription as a major mechanism for driving 

tumor growth and neoplastic transformation. Therefore, chromatin modifying enzymes and protein 

interactors that interpret the complex language of the epigenetic code have emerged as promising 

targets for cancer therapy. However, the complexity of mechanisms regulating gene transcription 

poses a significant challenge on the mode of action of developed drugs and tool molecules. Here we 

focus on the current state of target protein interactions present in chromatin remodeling enzymes 
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and nuclear scaffolding proteins and the underlying molecular mechanisms that govern the effects 

of these inhibitors on gene transcription in cancer.    

 

CHROMATIN REMODELERS as INTEGRATORS of EXTRACELLULAR and 

CYTOPLASMIC SIGNALS into GENE ACTIVITY 

To execute a timely and precise gene transcription response, eukaryotic cells employ multiple 

mechanisms to overcome the barrier created by densely packed nucleosomes. One such well-

recognized mechanism involves the ATP-dependent chromatin remodeling complexes (remodelers), 

which utilize the energy derived from ATP hydrolysis to restructure nucleosomes to gain access to 

the target gene chromatin.1, 4-6 There are, at least four families of well-characterized chromatin 

remodeling complexes in eukaryotes, including the switching defective/ sucrose non-fermenting 

(SWI/SNF),7 the imitation-switch (ISWI) family,8 the Mi-2/nucleosome remodeling and histone 

deacetylation (NuRD),9 and the inositol 80 (INO80) family.10 Each of these families (Figure 1) 

contains one or two distinct SWI2/SNF2-type catalytic ATPases and multiple associated subunits 

that contribute to a complex specificity in various biological contexts.1, 6, 11  

A large body of genetic and biochemical evidence suggests that extracellular and cytoplasmic 

signals - such as growth factors, cytokines, hormones, metabolites - enable the eukaryotic 

transcription machinery to recruit the chromatin remodelers to the target gene chromatin, allowing 

expression through modulating DNA accessibility in a context-dependent manner.12-15
 Therefore, 

the chromatin remodelers act as an integrator of the extracellular and cytoplasmic signals to the 

nucleus for precise regulation of target gene expression. Consequently, disruption of chromatin 

remodelers is intimately implicated in cancer development, progression and therapeutic resistance 

due to dysregulation of the gene transcription program.  Because of these essential functions, a 
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better insight into the chromatin remodeler machinery has surfaced as a new frontier for developing 

the next generation of anti-cancer therapeutic strategies.  

 

CHROMATIN REMODELERS IN-ACTION  

The SWI/SNF family: The SWI/SNF complex contains 12 to15 subunits, including the catalytic 

ATPase subunits (either BRG1 (SMARCA4) or BRM (SMARCA2)), several alternate core subunits 

(BAF250, BAF200), BAF47 (SMARCB1), BAF155 (SMARCC1), and BAF170 (SMARCC2), and 

other selected accessory subunits.16, 17 Recently, the proteomic approach to the mammalian 

SWI/SNF complex has recognized a few new sub-components such as BCL7 and BCL11 isoforms, 

and the bromodomain protein BRD9 and BRD7.18 Based on the subunit composition, the SWI/SNF 

complexes are generally grouped into two-types of complexes; BAF  complexes containing ATPase 

BRG1 or BRM along with BAF250a (ARID1A) or BAF250b (ARID1B), while PBAF (polybromo-

associated BAF) complexes only contains the BRG1 ATPase in addition to BAF180 (PBRM1) and 

BAF200 (ARID2) subunits17, 19 (Figure 1B). The majority of SWI/SNF subunits are capable of 

directly binding to DNA or nucleosomes and disrupting histone-DNA interactions and thus, 

modulate the transcription of the target genes.20, 21  In addition, the SWI/SNF chromatin remodelers 

also regulate the activity of non-chromatin substrates, such as the checkpoint kinase Mec1 (ATR in 

mammals) during cell-cycle progression.22  

 

The ISWI family: The ATPase subunit of the ISWI chromatin remodelers was first discovered in 

Drosophila,23 which forms the catalytic core of three distinct protein complexes, including 

nucleosome remodeling factor NURF,23, 24 ATP-utilizing chromatin assembly and remodeling factor 

ACF,25 and chromatin accessibility complex CHRAC.26 In contrast, human ISWI chromatin 

remodelers have two ISWI ATPase subunits, hSNF2H (SMARCA5) and hSNF2L (SMARCA1),27 
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28. Biochemically, SNF2H is the ATPase catalytic core subunit of multiple ISWI chromatin 

remodeling complexes in humans, such as hACF,29 hCHRAC,30 and RSF (remodeling and spacing 

factor),31 while hSNF2L forms the human NURF complex32 (Figure 1B). The catalytic subunit 

ISWI drives nucleosome assembly or changes nucleosome structure,33 and the HAND-SANT-

SLIDE domain of the ISWI catalytic subunit is required for its remodeling activity.34, 35  

Drosophila NURF, the first recognized remodeling factor belong to the ISWI family and is 

composed of four distinct subunits, including the ISWI ATPase NURF14023 - the largest subunit 

NURF301,36 the inorganic pyrophosphatase NURF38,37 and the 55-kD WD repeat protein 

NURF55.38 From the functional point of view, the NURF140 and NURF301 subunits are important 

for nucleosome sliding.36 In contrast, NURF55 facilitates the formation of protein complexes with 

roles in chromatin metabolism,38 while NURF38 may have a structural or regulatory role in the 

multi-protein complexes.37 In humans, the NURF complex consists of SNF2L, BPTF 

(Bromodomain and PHD finger-containing transcription factor), and retinoblastoma-associated 

proteins RbAP46/RbAP48.32 Drosophila ACF remodeler contains the Acf1 and ISWI subunits and 

promotes chromatin assembly and nucleosome remodeling during transcriptional activation.25, 39 

Human ACF is comprised of SNF2H and Acf1, and gauges the length of DNA with the help of 

histone H4 tail.40 CHRAC in Drosophila contains at least five subunits, including the ATPase ISWI 

and topoisomerase II,26 the largest subunit Acf1,41 and two developmentally regulated components 

CHRAC14 and CHRAC16.42 The human CHRAC complex contains hACF1 and p17 and p15 with 

roles in histone folding, but does not contain topoisomerase II.30 In addition, human RSF is 

composed of the nucleosome-dependent ATPase hSNF2H and the histone chaperone Rsf-1, and 

possesses chromatin remodeling and chromatin assembly activities.31, 43 Multiple lines of 

experimental evidence have demonstrated that the above-mentioned ISWI chromatin remodelers 
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play a key role in regulating gene transcription and genomic stability in the context of chromatin.44, 

45  

 

The Mi-2/NuRD family: The Mi-2/NuRD complex possesses histone deacetylation as well as 

ATP-dependent nucleosome remodeling activities.46-49 The Mi-2/NuRD complex consists of the 

catalytic subunits CHD3  and CHD4,  diverse HDACs, RbAp48 and RbAp46 with roles in histone 

binding, the metastasis-associated protein family proteins MTA1-3, and the methyl-CpG-binding 

domain family proteins MBD2 and MBD346-50 (Figure 1B). Among the NuRD complex, the CHD3 

and CHD4 proteins contain a catalytic ATPase module and are involved in chromatin assembly 

transcriptional regulation, and DNA damage repair.50, 51 HDAC1 and HDAC2 primarily participate 

in the remodeling of chromatin by deacetylating histones and are also present in other 

transcriptional repression complexes.50, 52 RbAp46 and RbAp48 are involved in multiple chromatin 

remodeling complexes and play key roles in establishing and maintaining chromatin structure.50, 53 

Structural evidence shows that the RbAp48-MTA1 interaction is essential for the integration of 

RbAp46/48 into the NuRD complex.54 MTA1-3 bind to histones and modulate the higher-order 

chromatin structure with predominant roles in tumorigenesis and progression.55-57 Biochemical and 

genetic evidence suggests that MBD3 is important for the integrity and stability of the NuRD 

complex, while MBD2 recruits the resulting complex onto DNA.58, 59 Further, emerging evidence 

implicates the lysine-specific demethylase 1 (LSD1) contributes to histone demethylation activity 

into the NuRD regulatory complex.60 More recently, the NuRD complex has also been found to be 

involved in gene transcription and DDR response.9, 61   

 

The INO80 and SWR1 family: The INO80 and SWR1 family of ATP-dependent chromatin 

remodeling complexes are prototyped by the presence of an ATPase domain and Rvb1/2 proteins in 
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yeast (Tip49a and Tip49b in mammals)10, 62-64 (Figure 1B). The yeast and human INO80 complex 

exhibits ATPase activity, which can be stimulated by DNA and nucleosome, assists in energy-

driven nucleosome sliding.10, 62, 64, 65 In contrast, the yeast SWR1 and its human homologs p400 and 

SRCAP (SNF2-related CBP activator protein) primarily catalyze the ATP-dependent replacement 

of histone H2A in canonical nucleosomes with the histone H2A variant H2A.Z in a stepwise and 

unidirectional fashion.66-68 Similar to the other chromatin remodelers, the INO80/SWR1 complex is 

also intimately implicated in the regulation of gene transcription and genomic stability in response 

to DNA damage.69-71 Despite similar overall structural organization,72 various chromatin remodelers 

exerts differential function in double-strand DNA break repair and checkpoint.73, 74  

 

DYSREGULATION OF CHROMATIN REMODELERS IN HUMAN CANCER  

Recent advances in genomic technologies have allowed us to gain better insight into the genomic 

signatures underlying human cancer. A growing body of evidence suggests that dysregulation of 

chromatin remodelers in human cancer, such as inactivating mutation, homozygous deletion, 

epigenetic silencing, and overexpression, plays a fundamental role in cancer development and 

progression (Table 1).  

 

Inactivating mutations: Inactivating mutations of the chromatin remodelers are common 

molecular abnormalities in human malignancies, generally resulting in the loss of their expression 

or function, and highlighting the putative tumor suppressor functions of many of the chromatin 

remodelers in cancer development and progression. The underlying cause of inactivating mutations 

could be explained by different mechanisms including gross chromosomal aberrations or loss of 

heterozygosity of the chromosomal region containing the tumor suppressor gene, as well as point 

mutations 75. A case in point is the SWI/SNF chromatin remodelers, which have been documented 
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in 44 studies to be collectively mutated in about 19.6% of all human cancer.16-18 The majority of 

these mutations lead to a loss of expression of the SWI/SNF chromatin remodeler proteins in cancer.  

The first component of the SWI/SNF family found to be mutated in human cancer is BAF47, 

which was discovered to contain biallelic inactivating mutations in aggressive rhabdoid tumors.76, 77 

Consistently, BAF47 haploinsufficiency predisposes the transform rhabdoid tumors to malignancy 

in an animal model.78 The underlying molecular changes that cause BAF47 gene inactivation in 

rhabdoid tumors include homozygous deletions and/or defective recombinations.79 In addition, 

homozygous deletions of the BAF47 tumor suppressor gene are also common in some human 

cancer such as familial schwannomatosis,80 epithelioid sarcomas,81, 82 and chronic myeloid 

leukemia.83 Similarly, homozygous deletions of BRG1 also result in the loss of BRG1 expression in 

several human cancer types including breast, lung, pancreas, and prostate cancer.84 As expected, 

BRG1 re-expression in BRG1-null cells restores cellular cancerous characteristics.84  

Accumulating evidence from whole-exome sequencing demonstrates that the SWI/SNF 

family members are recurrently mutated and inactivated in human cancer. Among them, BAF250A 

represents a commonly mutated gene in ovarian, endometrial, gastric, pancreas, breast, brain, 

prostate, lung, and liver cancer.11, 18, 85-93 Similarly, inactivating mutations of genes encoding other 

SWI/SNF subunits such as BAF250B,92, 94-97 ARID292, 93, 95, 98-102 BRG1,75, 103-111 BAF57,112, 113 and 

BAF180 107, 114-116 also common in human cancer. In addition, CHD4 is mutated in endometrial, 

gastric and colorectal cancers.90, 117, 118 Notably, mutations in the ISWI and INO80/SWR1 families 

of chromatin remodelers are rarely reported in human cancer.  

 

Epigenetic silencing: In addition to inactivating mutations, other underlying mechanisms, such as 

epigenetic silencing through nucleosome remodeling, histones and DNA methylation, also 

contribute to the inactivation or loss of function of chromatin remodelers in human cancer.119 For 

10 

 

example, the BRM gene is inactivated in adult lung, breast, ovary, bladder and esophagus cancers, 

and pediatric rhabdoid tumors,120, 121 and  epigenetic silencing may be a major mechanism behind 

the commonly observed BRM deficiency in such tumors.120, 122 Accordingly, HDAC inhibitors are 

able to re-express BRM and suppress the formation of tumor development by BRM-null cells, and 

suggesting a reversible epigenetic nature of BRM expression.120, 122 Further BRM expression and 

function could be reversed by other therapeutic compounds and its targets in various model 

systems121, 123, 124 For instance, compounds RH02032 and GK0037 as well as the mitogen-activated 

protein (MAP) kinase pathway inhibitors, effectively restore BRM expression and thereby, suppress 

BRM-deficient cancer cell growth, suggesting that pharmacologic reversal of the BRM gene 

expression may be developed as a therapeutic strategy.123, 124 In addition, BAF250B exhibits 

significantly reduced or loss of expression in prostate cancer tissues due to promoter 

hypermethylation.125   

 

Overexpression: Cancer cells frequently overexpress oncogenes to drive the signaling pathways 

that are essential for cell survival, invasion and metastasis, and are associated with the development 

of drug-resistant phenotypes. One of the best examples for overexpression of the chromatin 

remodelers in human cancer is the Mi-2/NuRD family of chromatin remodelers. In this context, 

multiple subunits of the Mi-2/NuRD family of chromatin remodelers such as MTA1, MTA2, MTA3 

61, 126 and HDAC1 and HDAC2 127-129 are overexpressed in a variety of human cancer and are 

associated with tumor progression, therapeutic response and patient prognosis (Table 1). In addition, 

multiple lines of evidence suggest that the ISWI-family chromatin remodeler Rsf1 is overexpressed 

in various cancers including, liver,130 colon,131 rectal,132 bladder,133 prostate,134 ovarian,135 oral,136 

and nasopharyngeal.137 Moreover, elevated expression of RSF1 in such tumors is closely associated 

with tumor aggressiveness, poor therapeutic response and worse survival and prognosis.132, 137-139 In 
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addition, SNF2H, the binding partner of the RSF1, is also overexpressed in human breast cancers 

and correlates with a poor prognosis through promoting breast cancer cell proliferation and 

invasion.140 Furthermore, RSF1’s interaction with hSNF2H plays an important role in tumor 

progression and the development of chemo-resistance in cancers with RSF1 overexpression.139, 141 

In addition to inactivating points, homozygous deletions and epigenetic silencing, components of 

the SWI/SNF family are widely overexpressed in human cancers, such as BRG1 and BRM, in 

primary breast cancers,142 BAF53a in rhabdomyosarcoma tumors,143 BAF57 in prostate cancer,144 

BAF60A in gastric cancer,145 and BAF155 in prostate and colorectal cancer.146, 147  

 

MECHANISTIC ROLE OF THE CHROMATIN REMODELERS IN CANCER  

The SWI/SNF family of chromatin remodelers regulates the cell-cycle, cell death or survival, 

differentiation, genomic instability, and DNA repair.148 In addition, inactivation of SWI/SNF 

subunits also disrupts the expression of its target genes.149, 150 For example, the loss of BRG1 

promotes tumor aggressiveness by altering nucleosome positioning at a wide range of key cancer-

associated genes, and thus, dysregulating the expression of such target genes as well as resulting 

downstream signaling pathways.148, 151-154 In addition, recurrent inactivating mutations in BAF47 

contribute to malignant phenotypes through transcriptional attenuation of multiple tumor suppressor 

pathways, such as the p15,155 p16,155-157 p53,158-160 and stimulation of IGFBP7,161 as well as 

oncogenic signaling pathways, such as the Hedgehog-Gli pathway,162 the cyclin D1,163 the small 

GTPase RhoA,164 the Wnt/β-catenin pathway,165 the AKT signaling,161 and by modulating mitosis 

through Aurora A overexpression.166 In the same vein, other subunits of this family, such as BAF57, 

167-170 BAF60,171, 172 BAF180,173 BAF250A,174-180 BRD7,19, 181 and BCL11B182 also govern tumor 

development and progression.   
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One of the best studied chromatin remodelers of the ISWI family in human cancer is RSF1, 

which significantly promotes tumor aggressiveness 183, induces the development of chemoresistance 

138, 139 and chromosomal instability184 through the modulation of gene transcription and DNA 

damage response in a chromatin remodeling-dependent manner. In addition, SNF2H, a well-

characterized binding partner of RSF1, is recruited to the sites of chromatin containing damaged 

DNA by multiple DNA-damaging proteins, and thus, regulates DNA repair.185-188 Consequently, the 

loss of SNF2H may lead to defective chromatin remodeling and impaired responsiveness to DNA 

damaging agents.186, 188 Similarly, both inhibition or knockdown of SNF2L could result in DNA 

damage and apoptosis.189 Like the SWI/SNF and ISWI family of chromatin remodelers, the Mi-

2/NuRD family chromatin remodelers contribute to the regulation of gene transcription and DNA 

damage response through a chromatin remodeling mechanism.9, 126, 190-192 In contrast to other 

chromatin remodeling complexes, the mechanistic role of the INO80/SWR1 family of chromatin 

remodelers in human cancer remains poorly understood.  

 

CHROMATIN REMODELERS AS CANCER THERAPEUTIC TARGETS AND 

BIOMARKERS 

Alterations in chromatin remodelers are not only important in oncogenesis but also in the 

development of resistance to therapy (Table 2). An interesting example is the SWI/SNF catalytic 

components BRG1 and BRM which mediate chemo- and radio-resistance of human cancer cells 

through, at least in-part, activation of the DNA damage response.193, 194 Consequently, targeting 

either BRG1 or BRM may enhance tumor cellular sensitivity to chemotherapy agents and 

radiotherapy.193, 195, 196 In addition, knockdown of BAF47 in melanoma cell lines results in 

significant chemo-resistance,197 while BAF155 knockdown enhances the resistance of pancreatic 

cancer cells to gemcitabine.198 BAF57 is a candidate chromatin modifier for the development of 
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resistance to MET and ALK inhibitors in non-small cell lung cancer cells through alteration of the 

EGFR signaling.199 Similarly, cancer cells lacking BAF250A and BAF250B are deficient in DNA 

repair and sensitive to DNA damaging agents such as ionizing radiation, cisplatin, and PARP 

inhibitors.200, 201 Furthermore a reduction in the levels of BRG1, BAF250A, and BAF47 correlates 

with a decreased sensitivity of primary acute lymphoblastic leukemia cells to glucocorticoid 

therapy.202  

Emerging data suggests that cancers with SWI/SNF-mutations may also be driven by the 

oncogenic effects of the basal SWI/SNF subunits. This raises the possibility of targeting such 

protein interactions for therapeutic development.203 For instance, BRM plays an essential role in 

oncogenesis caused by the loss of BRG1, suggesting that BRM could be potentially targeted in 

cancer with mutated BRG1.204-206 In the same vein, oncogenesis in the absence of BAF47 may also 

be dependent on BRG1 activity, and thus, approaches targeting BRG1 expression and/or activity 

may have therapeutic implications in BAF47-deficient tumors.207 However, it is noteworthy to note 

that the loss or inactivation of BAF47 expression does not always influence the expression of 

BRG1-regulated genes in human cells.208  

Among the ISWI family of chromatin remodelers, RSF1 is required for the development of 

chemoresistance to paclitaxel in ovarian cancer,138, 139 and BPTF promotes resistance to BRAF 

inhibitors in melanoma.209 Among the Mi2/NuRD complex, MTA1 overexpression induces 

cisplatin resistance in nasopharyngeal carcinoma by promoting cancer stem cells properties, and 

promotes docetaxel resistance in human prostate cancer cells through transcriptional repression of 

NR4A1.210 In addition, HDAC1 and HDAC2 regulate the expression of P-gp via chromatin 

remodeling to modulate the sensitivity of drug resistant cells,211 and CHD4 regulates homologous 

recombination DNA repair and CHD4-depletion confers hypersensitivity to PARP inhibitors.212  
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In general, chromatin remodeling exists in equilibrium with transcriptional silencing. For example, 

a key function of the SWI/SNF complex during development is prevention of the addition of the 

repressive H3K27me3 mark since the conditional deletion of BRG leads to the accumulation of 

H3K27Me3 over the genome and repression of gene transcription.213 Likewise, NuRD-mediated 

deacetylation of histone H3K27 enables the addition of the repressive trimethylation mark to the 

same residue (H3K27me3) by PRC2.214 Therefore, targeting the histone methyl transferases of the 

PRC2 complex may provide alternative strategies to influence this precious balance between 

chromatin remodeling and gene silencing. Indeed, the selective H3K27 metyltransferase EZH2 

inhibitors, such as EPZ-6438, CPI-1205 and tazemetostat, have been entered clinical trials and show 

promising results in oncology (https://www.clinicaltrials.gov/ct2/results?term 

=EZH2&Search=Search). 

 

PROTEIN INTERACTION INHIBITORS TARGETING REMODELING COMPLEXES – 

OPPORTUNITIES FOR PHARMACOLOGICAL INTERVENTION?  

The complexity of chromatin remodeling complexes poses a challenge to approaching rational drug 

design. Along with difficulty targeting the ATP dependent catalytic domains of remodeling 

complexes, structural information that would enable the development of targeting methodologies 

and in silico approaches are still lacking. This lack of development in targeting runs counter to our 

understanding that is quite specific remodeling complexes are recruited onto specific sites on 

chromatin through interactions with small protein domains that recognize specific posttranslational 

modification such as lysine methylation and acetylation, arginine methylation, phosphorylation and 

many more.  

Although the precise mechanism of remodeling complex recruitment has not yet been 

determined in detail, the reader domains are likely to facilitate anchoring of these complexes to an 
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appropriate combination of chromatin marks through specific recognition of reader domains. 

Remodeling complexes typically contain a number of diverse reader domains. For example the 

PHD finger of BPTF, which is part of the NURF complex recognizes the activating modification 

H3 trimethylated at lysine 4 (H3K4me3) associated with transcriptional start sites215 and its 

bromodomain reads H4K16ac, which is usually associated with transcriptional activation.216 Also 

bromodomains that are part of proteins in the SWI/SNF complex including BRD9, BRM and BRG 

recognize a variety of acetylation marks on different histones, many of which, such as H4K16ac or 

H2K5ac are associated with gene activation and active transcription.217 Interestingly, BRD9 also 

recognizes in a specific manner butyryllysine as well as propionylated lysine residues, but the 

precise role of these more recently identified marks needs to be determined.218 Recent inhibitor 

development efforts by the scientific and pharmaceutical community has demonstrated that many 

such interacting domains can be efficiently targeted by drug-like small molecules. A generic 

complex is illustrated in Figure 2.  Interaction domains that recognize sequences containing 

methylated or acetylated lysines would be of particular interest for drug development.  

Methyl-lysine binding proteins may recognize unmodified lysines as well as mono, di and tri-

methylated lysine residues. This diverse family comprises members of the ‘Royal family’ (Tudor, 

Chromo, PWWP, and MBT domains) as well as other methyl-lysine dependent reader domains such 

as WD40 and PHD domains. The importance of the methyl-lysine recognition process is evident by 

the considerable number of mutations in these interaction motifs, in particular in PHD fingers. For 

instance the C-terminal PHD domain of ING (INhibition of Growth) is frequently mutated, or 

down-regulated in Esophageal Squamous Cell Cancer (ESCC), basal cell carcinoma, and other 

cancer types.219 Computational analysis of the family of lysine methyl binding domains suggests a  

good druggability.220 However, only few potent and specific inhibitors have been developed so far. 

The first reported potent inhibitor for this family is UNC1215. This inhibitor selectively targets 
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L3MBTL3, a member of the malignant brain tumor (MBT) family of transcriptional repressors.221 

Recently a potent inhibitor, OICR-9429 has been reported to inhibit the interaction of WDR5 with 

MLL.222  However, while these proof-of-principle studies suggest that potent and selective 

inhibitors can be developed for these protein interaction domains, inhibitors targeting methyl-lysine 

reader domains present in remodeling complexes have not been reported so far.  

 

EMERGING SIGNIFICANCE OF BROMODOMAINS IN CANCER  

In recent years, inhibitor development programs targeting acetyl-lysine interaction domains of the 

bromodomain family has been quite successful and led to the generation of a comprehensive set of 

potent and selective inhibitors including several compounds targeting bromodomains present in 

remodeling complexes.223, 224 Bromodomains are small helical acetyl-lysine reader domains with 

excellent druggability.225, 226 The bromodomains are frequently present in chromatin-associated 

proteins that play key roles in the regulation of transcription217 or often deregulated in cancer227 In 

particular, the recent development of inhibitors against the BET family228, 229 and the efficacy of 

these inhibitors in cancer led to a multitude of drug development efforts that have now entered 

clinical testing. BET bromodomain inhibitors that act at the target gene promotor and enhancers, 

will not be discussed here but are summarized in several recent excellent reviews.224, 230  

It is important to recognize that the validity of a specific protein or a functional domain in a 

multi-subunit remodeling complex as a therapeutic target is not always derived from genetic studies 

or overexpression data.  For example, BRG1 has been frequently found to be bi-allelically 

inactivated by homozygous deletions or combinations of deletions and mutations in several tumor 

types, especially in lung cancer.203 However, BRG1 is also found to be overexpressed in tumors 

such as gastric,231 prostate,232 and skin cancer233 and expression levels correlate with tumor 

progression. We suggest that targeting the components of the remodeling complexes by 
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conventional methods using knockdown or knockout strategies in different cell types do not 

necessarily provide a satisfying answers if the target protein represents a potential therapeutic target 

and moreover, such studies do not indicate, which domain is the most relevant for targeting such 

complex multicomponent systems. Therefore, the availability and development of specific tool 

compounds provides a crucial means to explore the therapeutic potential of these targets and 

validate biological hypothesis when used in cellular or animal models of disease. These challenges 

by these complications led to the development of selective inhibitors, so called chemical probes, 

that now covering most of the bromodomain tree. Useful chemical ‘probes’ are compounds that 

need to have sufficient potency and specificity as well as cellular permeability.234  Additionally, 

their potential off-target effects are well characterized through screening against a variety of other 

unrelated pharmacologically relevant targets like kinases or GPCRs during initial developmental 

stages. In order to provide additional confidence in the observed biological response an effort has 

been made to have more than one specific inhibitor for a given target. For example, although both 

BAZ2-ICR and GSK2801 inhibit the interaction of BA2A/B with chromatin, they provide 

alternative scaffolds to target these proteins. In addition, a negative control compound chemically 

related to GSK2801 presents further reassurance that the observed biological effects are indeed due 

to targeting the bromodomains of BAZ2A/B (Figure 3). Several complementing inhibitors are also 

available for the bromodomains of the histone acetyltransferases EP300/CREBBP: CBP-30 and I-

CBP112 complements each other and have helped to elucidate the role of CREBBP in inflammatory 

disorders235 and leukemia236 (Figure 3). In general, members of the BRPF family are scaffolding 

proteins with an essential function to recruit histone acetyl transferases to chromatin. Several probes 

from alternative chemical scaffolds targeting either the whole family (pan-inhibitors OF-1 and NI-

57) or a specific family member (PFI-4) have been developed (Figure 3).  
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Several potent inhibitors are being developed for bromodomains present in the remodeling 

complexes. The first set of inhibitors has been developed for bromodomains present in BAZ2A/B 

protein of the NoRC complex. The family member BAZ2A associates with ATPase SNF2h to form 

the nucleolar remodeling complex (NoRC).237 NoRC associates with the regulation of the 

expression of noncoding RNAs and establishes a heterochromatic structure at centromeres and 

telomeres,238 a function that has been linked to the BAZ2A bromodomain.239 BAZ2A is required to 

maintain the growth of prostate cancer cells and its high expression levels associates with the 

recurrence of prostate cancer.240 The closely related BAZ2B is a less studied family member but is 

overexpressed in pediatric B cell acute lymphoblastic leukemia (B-ALL) and high BAZ2B levels 

are associated with poor outcome of B-ALL patients. However, so far only the synthesis of two 

chemically diverse inhibitors have been reported and the biological consequences of inhibiting the 

BAZ2A/B bromodomains and their potential role in cancer remains to be elucidated.241, 242   

A strong correlation of protein expression and poor prognosis exists for the bromodomain 

protein and ATPase ATAD2, which functions as an ATP dependent co-regulator of transcription 

factors such as c-Myc, estrogen and androgen receptors and E2F transcription factors.243-245 ATAD2 

is overexpressed in a large diversity of tumors, particularly in gastrointestinal tumors, large B-cell 

lymphoma, hepatocellular carcinoma and breast and lung cancers,246-249 and correlates well with a 

poor prognosis in patients with breast or lung cancer and associates with  a distant recurrence.250 

Recently potent inhibitors for this interesting bromodomain protein have been reported, but similar 

to BAZ2A/B inhibitors, their biological evaluation is still lacking.251  

As described above, SWI/SNF complexes exhibit chromatin remodeling activity and because 

component of SWI/SNF are mutated or lost at high frequency in tumors, this remodeling complex 

has attracted considerable attention in oncology. SWI/SNF contain either the catalytic remodeling 

subunit BRM (SMARCA2) or BRG1 (SMARCA4), which alters chromatin structure in an ATP-
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dependent fashion resulting in an “open chromatin” competent for interactions with transcription 

factors.252 Both catalytic subunits of SWI/SNF contain a bromodomain, offering an opportunity for 

inhibitor development. A subclass of SWI/SNF complex, PBAF, contains the polybromo protein 

(PB1 or BAF180) which is required for ligand-dependent trans-activation by nuclear hormone 

receptors. PB1 contains six evolutionary conserved bromodomain modules together with two 

methyl-lysine binding BAH domains, suggesting that anchoring PBAF to chromatin is the main 

function of the PB1 scaffolding protein. PB1 has been shown to play a key role in the regulation of 

cell cycle and senescence253-255 as well as in the mediation of vitamin D receptor-dependent 

transcription. Mice lacking PB1 exhibit defects in heart development due to impaired epithelial-to-

mesenchymal-transition (EMT) and arrested maturation of the epicardium as a result of the down-

regulation of the growth factors TGF, FGF and VEGF.256, 257  

Recent loss-of-function genetic studies suggest that SMARCA2 is an essential gene for cell 

survival in SMARCA4-deficient lung cancer, making a compelling case to target SMARCA2 in 

such tumors.204-206 However, the requirement of the bromodomain in SMARCA2 has not been 

demonstrated. Using the selective inhibitor PFI-3 developed by our laboratory and Pfizer (Fedorov 

et al, in press) a recent study targeting the SMARCA2/4 bromodomain did not result in cytotoxicity 

or inhibition of clonogenic growth in SMARCA4-deficient tumors. In contrast, the helicase domain 

convincingly phenocopied the genetic loss-of-function experiments.258 The SWI/SNF complex 

harbors a large diversity of protein interaction domains that anchor this large remodeling complex 

to specific sites containing a certain set of post-translational modifications. Hence, PFI-3 does not 

appear to target bromodomains that are critical for the recruitment of SWI/SNF to the chromatin as 

PFI-3 is not able to displace the endogeneous SMARCA2/4 from chromatin, suggesting the role of 

another interaction domain or a combination of interaction domains for chromatin targeting the 

SWI/SNF complex. Additional targeting possibilities include bromodomains present on PB1 or in 
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BRD7/9. Two structurally diverse inhibitors targeting the BRD7/9 bromodomains have been 

recently reported. It would be interesting to learn whether these inhibitors alone or in combination 

with PFI-3 would displace the SWI/SNF complex from chromatin and result in synthetic lethality as 

reported in the genetic loss-of-functional studies.259, 260 An alternative strategy would be to target 

the SWI/SNF complex for degradation using phtalimide adducts.261  

In closing, targeting chromatin remodeling complexes has only recently emerged as a new 

area in chemical biology. Thus, more studies need to be carried out in order to assess the potential 

usefulness of developed tool compounds either as single-agent or combination therapies with 

conventional chemotherapeutic treatment or radiotherapy in oncology. However, the central role of 

remodeling complexes in tumorigenesis, tumor maintenance, and progression makes these large 

protein complexes interesting targets for the development of future treatment strategies. 
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Figure legends 

Figure 1. Four families of chromatin remodelers. A, The domain architecture of the catalytic 

subunits of four major classes of chromatin remodelers. Each ATPase subunit contains a distinctive 

ATPase domain that is split into two parts: a DEAD-like helicases superfamily (DExx) domain and 
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a helicase superfamily c-terminal (HELICc) domain. Other specific domains for various chromatin 

remodeler families include the bromodomain (bromo) in SWI/SNF family, the HAND-SANT-

SLIDE (HSS) domain in ISWI family, the chromodomains (chromo) in the Mi-2/NuRD family, and 

the helicase/SANT-associated (HSA) domain in both SWI/SNF and INO80/SWR1 families. 

Illustrated domains are not in scale with the size of the proteins. B, The ATPase Subunits and other 

core subunits of four families of human chromatin remodelers.  

Figure 2: Reader domains in chromatin remodeling complexes. A, Generic composition of the 

SWI/SNF complex. Targeted domains as well as developed inhibitors are indicated. As discussed, 

the complex may contain tissue specific components. Here a generic complex is shown but not 

isoforms are included for clarity. Reader domains are shown as symbols as indicated in the figure 

capture. B, NoRC complex containing the bromodomain protein BAZ2A/B. Inhibitors targeting 

reader domains are shown in red and the targeted domains are indicated.   

Figure 3: Chemical probes available targeting reader domains of protein acetylation. A large 

number of inhibitors have now been developed for BET bromodomains and therefore, only 2 

examples are shown in the figure.  Inhibitor names are shown in black (bold) and targeted 

bromodomains are shown in red. For protein containing more than one bromodomain the names has 

been expanded by a number indicating the position for the bromodomain from the N-terminus, e.g. 

PB1(1) represents the first bromodomain in PB1). Name of the subfamilies is according to 

Filippakopoulos et al.224 

 

Table 1. Dysregulation of chromatin remodelers in human cancer 

Dysregulation  Remodeler family Subunits Tumor types  

Inactivating 
mutation 

SWI/SNF BRG1 Renal,107 ovarian cancer,105, 106 Burkitt 
lymphoma108 

  BAF180 Renal cancer116 

  BAF200 Lung cancer102 
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Table 2. Chromatin remodelers in therapeutic response of human cancer 

  BAF250A Liver,88 renal,107 endometrial cancer,90 
Burkitt lymphoma108 

 Mi-2/NuRD CHD4 Endometrial cancer90, 117 

Deletions SWI/SNF BAF47 Malignant rhabdoid tumors,77  chronic 
myeloid leukemia,83 rhabdomyosarcoma, 
262 epithelioid sarcoma81 

  BRG1 Oral,263 pancreatic cancer,111 rhabdoid 
tumor75 

  BRM Pancreatic cancer111  

  BAF180 Pancreatic cancer111 

  BAF250B Pancreatic cancer111 

Epigenetic 
silencing 

SWI/SNF BRM Various types of human cancer120-123, 264 

Overexpression SWI/SNF BRG1 Prostate cancer,265 melanoma233, 266 

  BAF53a Rhabdomyosarcoma143 

  BAF57 Prostate cancer144 

  BAF155 Prostate cancer146 

 ISWI RSF1 Nasopharyngeal,137 oral,136 liver,130 
gallbladder,267 rectal,132 colon,131    
bladder,133 ovarian,135 prostate cancer134 

  SNF2H Breast,140 ovarian cancer141 

  BPTF Melanoma209 

 Mi-2/NuRD MTA1 Nasopharyngeal,268 oral and tonsil,269 
breast,270 esophageal,271 gastric,272 liver, 
273 gallbladder,274 colon,275 colorectal,272 
pancreatic,276 lung,277 prostate,278 
endometrial,279 ovarian,280 cervical cancer 
281.  

  MTA2 Breast282 and liver cancer283 

  MTA3 Non-small cell lung cancer284, 285 

  HDAC1  Gliomas,286 thyroid,287 gastric,288 
colorectal,128 renal,289 prostate,129 ovarian 
and endometrial cancer,290 and 
lymphomas291, 292 

  HDAC2 Gliomas,286 thyroid,287 gastric,288 
colorectal,128 renal,289 pancreatic,293 
prostate,129 ovarian and endometrial,290 
lymphoma294   
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Remodeler 
family 

Subunits Therapeutic response Tumor types  

SWI/SNF BRG1 Resistance to cisplatin Lung and head/neck cancer196 

 BRM Resistance to cisplatin Lung and head/neck cancer196 

 BAF47 Sensitivity to doxorubicin, 
daunorubicin, and epotoside   

Breast cancer295 

 BAF57 Sensitivity to MET and ALK 
inhibitors 

Non-small cell lung cancer199 

 BAF155 Sensitivity to gemcitabine Pancreatic cancer198 

 BAF250A Resistance to ionizing radiation and 
cisplatin 

Lung cancer and osteosarcoma201 

  Resistance to PARP inhibitor  Colon cancer296 

 BAF250B Resistance to ionizing radiation and 
cisplatin 

Lung cancer and osteosarcoma201 

ISWI RSF1 Paclitaxel resistance Ovarian cancer138, 139 

 BPTF Resistance to BRAF inhibitors Melanoma209 

Mi-2/NuRD CHD4 Resistance to PARP inhibitors Breast cancer212 

  Sensitivity to cisplatin  BRCA2-mutant cancer297 

  Sensitivity to daunorubicin and 
cytarabine  

Acute myeloid leukemia298 

 MTA1 Cisplatin resistance Nasopharyngeal carcinoma299 

  Docetaxel resistance Prostate cancer210 

 HDAC1 Sensitivity to vinblastine, oxaliplatin, 
fluorouracil and mitomycin C 

Colorectal cancer211 

 HDAC2 Resistance to the topoisomerase II 
inhibitor etoposide  

Pancreatic adenocarcinoma293 

  Sensitivity to vinblastine, oxaliplatin, 
fluorouracil and mitomycin C 

Colorectal cancer211 
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